

Correction to Analysis of the Structure and Function of YfcG from *Escherichia coli* Reveals an Efficient and Unique Disulfide Bond Reductase [(2009) *Biochemistry 48*, 6559. DOI: 10.1021/bi9008825]. Megan C. Wadington, Jane E. Ladner, Nina V. Stourman, Joel M. Harp, and Richard N. Armstrong\*

Table 2: Steady-State Kinetic Constants for the Reduction of 2-Hydroxyethyl Disulfide by YfcG and Its C166A Mutant at 25  $^{\circ}\mathrm{C}$ 

| enzyme       | $k_{\rm cat}  ({\rm s}^{-1})$ | $k_{\text{cat}}/K_{\text{M}}^{\text{GSH}} (\text{M}^{-1} \text{ s}^{-1})$ | $K_{\rm M}^{\rm GSH}  ({\rm mM})$ |
|--------------|-------------------------------|---------------------------------------------------------------------------|-----------------------------------|
| YfcG         | $29 \pm 2$                    | $(1.8 \pm 0.3) \times 10^4$                                               | $1.6 \pm 0.3$                     |
| YfcG (C166A) | $30 \pm 2$                    | $(3.0 \pm 0.7) \times 10^4$                                               | $1.0 \pm 0.2$                     |

Because of an error in the analysis of the initial velocity data, the steady-state kinetic constants,  $k_{\rm cat}$  and  $k_{\rm cat}/K_{\rm M}^{\rm GSH}$ , reported in Table 2 are incorrect and smaller than reported by a factor of 6.2. A corrected Table 2 appears above. This correction does not alter the conclusions made in the original report.

DOI: 10.1021/bi101851x Published on Web 11/23/2010